Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Bromophenyl)-3-(3-methyl-2-thienyl)prop-2-en-1-one

Hoong-Kun Fun,^a* Suchada Chantrapromma,^b‡ P. S. Patil^c and S. M. Dharmaprakash^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 21 April 2007; accepted 23 April 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.108; data-to-parameter ratio = 23.3.

The title compound, C14H11BrOS, crystallizes with four independent molecules (A, B, C and D) in the asymmetric unit which differ in the orientations of the thiophene and benzene rings with respect to the enone unit. The dihedral angles between the benzene and thiophene rings are 6.03 (14), 21.79 (14), 15.04 (14) and 4.92 (14) $^{\circ}$, respectively, in molecules A, B, C and D. Intramolecular $C-H\cdots O$ and $C-H\cdots S$ interactions generate S(5) ring motifs. In the crystal structure, weak $C-H \cdots O$ intermolecular hydrogen bonds link the molecules into layers parallel to the [011] plane. In addition, short intermolecular Br···O contacts [2.997 (2)–3.110 (2) Å] are observed.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data see: Allen et al. (1987). For related structures, see: Patil, Dharmaprakash et al. (2006); Patil, Ng et al. (2007); Patil, Rosli et al. (2007); Patil, Teh et al. (2006); Patil, Teh et al. (2007); Shettigar et al. (2006); Patil, Chantrapromma et al. (2007).

‡ Additional correspondence author, email: suchada.c@psu.ac.th

Crystal data

β

C ₁₄ H ₁₁ BrOS	$\gamma = 93.942 \ (2)^{\circ}$
$M_r = 307.20$	V = 2477.43 (17) Å ³
Triclinic, P1	Z = 8
a = 7.4329 (3) Å	Mo $K\alpha$ radiation
b = 17.3541 (7) Å	$\mu = 3.47 \text{ mm}^{-1}$
c = 19.2551 (8) Å	T = 100.0 (1) K
$\alpha = 90.736 \ (2)^{\circ}$	$0.56 \times 0.54 \times 0.34$ mm
$\beta = 90.731 \ (2)^{\circ}$	

42459 measured reflections

 $R_{\rm int} = 0.042$

14381 independent reflections

10457 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005) $T_{\min} = 0.165, T_{\max} = 0.307$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	617 parameters
$wR(F^2) = 0.108$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 1.18 \text{ e} \text{ Å}^{-3}$
14381 reflections	$\Delta \rho_{\rm min} = -0.91 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

ŀ	ydrogen-bond	geometry	(Å,	°)
		<u> </u>		

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1A - H1A \cdots O1C^{i}$ $C1B - H1B \cdots O1D^{ii}$ $C1D - H1D \cdots O1B^{iii}$	0.93 0.93 0.93	2.55 2.47 2.54	3.478 (4) 3.397 (4) 3.440 (4)	175 177 164
Symmetry codes: (i) $-x, -y+2, -z.$	-x + 1, -y, -	-z + 1; (ii)	-x + 1, -y + 1	1, -z; (iii)

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

PSP thanks the DRDO, Government of India, for a Junior Research Fellowship (JRF). The authors thank the Malaysian Government and Universiti Sains Malaysia for Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/ 671064.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2377).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, 01738-01740.
- Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.
- Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, 059-060.

- Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, 0785-0786.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, 03096-03098.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122-o2123.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shettigar, V., Patil, P. S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidra Brasad, J. (2006). J. Cryst. Growth, 295, 44–49.
 Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Acta Cryst. (2007). E63, o2724-o2725 [doi:10.1107/S1600536807020089]

1-(4-Bromophenyl)-3-(3-methyl-2-thienyl)prop-2-en-1-one

H.-K. Fun, S. Chantrapromma, P. S. Patil and S. M. Dharmaprakash

Comment

Chalcone derivatives play an important role in non-linear optics (Patil, Dharmaprakash *et al.*, 2006; Patil, Chantrapromma *et al.*, 2007; Patil, Teh *et al.*, 2006, 2007). We have synthesized a series of chalcone derivatives to study their non-linear optical properties (Patil, Teh *et al.*, 2006; 2007; Patil, Dharmaprakash *et al.*, 2006; Shettigar *et al.*, 2006; Patil, Ng *et al.*, 2007; Patil, Rosli *et al.*, 2007; Patil, Chantrapromma *et al.*, 2007). Now we report here the crystal and molecular structure of the title compound, (I). Compound (I) crystallizes in a centrosymmetric space group and hence this precludes the presence of second-order non-linear optical properties.

Compound (I) crystallizes with four independent molecules (A, B, C and D) per asymmetric unit (Fig. 1). The dimensions of all four molecules are very similar, except for slightly different orientations of the thiophene and benzene rings with respect to the enone unit [C5–C7/O1]. The dihedral angles between the benzene and thiophene rings in molecules A, B, C and D are 6.03 (14)°, 21.79 (14)°, 15.04 (14)° and 4.92 (14)°, respectively. The enone unit in each molecule is slightly distorted from planarity, as indicated by the C5–C6–C7–O1 torsion angles of 2.8 (5)°, -3.9 (4)°, -4.7 (4) and 2.3 (4)°, respectively, in molecules A, B, C and D. The bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987) and comparable to those in related structures (Patil, Teh *et al.*, 2006; Patil, Dharmaprakash *et al.*, 2006; Shettigar *et al.*, 2006; Patil, Ng *et al.*, 2007; Patil, Chantrapromma *et al.*, 2007).

In the molecular structure (Fig. 1), intramolecular C—H···O [H···O 2.41-2.46 Å, C···O 2.737 (4)-2.794 (4)Å and C—H···O 100-102°] and C—H···S [H···S 2.81-2.87 Å, C···S 3.171 (3)-3.190 (3) Å and C—H···S 103-104°] interactions generate S(5) ring motifs (Bernstein *et al.*, 1995). In the crystal structure, the molecules are linked into layers parallel to the [0 1 1] plane by intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 1). In addition, short intermolecular Br···O contacts [2.997 (2) Å-3.110 (2) Å] are observed.

Experimental

An aqueous solution of NaOH (10%, 10 ml) was slowly added with stirring (4 h) to a solution 3-methylthiophene-2-carbaldehyde (0.01 mol) and 4-bromoacetophenone (0.01 mol) in methanol (60 ml). The reaction mixture was diluted with water (250 ml), and kept aside for 12 h. The resulting solid was collected by filtration, dried and recrystallized from acetone. Yellow block-shaped single crystals of (I) suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual density peak is located 0.87 Å from atom Br1B and the deepest hole is located 0.89 Å from atom Br1C.

Figures

Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines indicate hydrogen bonds.

Fig. 2. The crystal packing of (I), viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

1-(4-Bromophenyl)-3-(3-methyl-2-thienyl)prop-2-en-1-one

Crystal data	
C ₁₄ H ₁₁ BrOS	Z = 8
$M_r = 307.20$	$F_{000} = 1232$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.647 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.4329 (3) Å	Cell parameters from 14381 reflections
<i>b</i> = 17.3541 (7) Å	$\theta = 1.1 - 30.0^{\circ}$
<i>c</i> = 19.2551 (8) Å	$\mu = 3.47 \text{ mm}^{-1}$
$\alpha = 90.736 \ (2)^{\circ}$	T = 100.0 (1) K
$\beta = 90.731 \ (2)^{\circ}$	Block, yellow
$\gamma = 93.942 \ (2)^{\circ}$	$0.56 \times 0.54 \times 0.34 \text{ mm}$
$V = 2477.43 (17) \text{ Å}^3$	

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer	14381 independent reflections
Radiation source: fine-focus sealed tube	10457 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 30.0^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 1.1^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -24 \rightarrow 16$
$T_{\min} = 0.165, T_{\max} = 0.307$	$l = -27 \rightarrow 27$
42459 measured reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 0.0358P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $(\Delta/\sigma)_{max} = 0.002$ $wR(F^2) = 0.108$ $\Delta\rho_{max} = 1.18 \text{ e } \text{Å}^{-3}$ S = 1.06 $\Delta\rho_{min} = -0.91 \text{ e } \text{Å}^{-3}$ 14381 reflectionsExtinction correction: none617 parametersPrimary atom site location: structure-invariant direct
methodsSecondary atom site location: difference Fourier mapHydrogen site location: inferred from neighbouring
sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1A	-0.10165 (4)	0.310304 (17)	-0.001640 (14)	0.02312 (7)
S1A	0.22066 (10)	0.02292 (4)	0.39343 (4)	0.02289 (15)
O1A	-0.0078 (3)	0.30625 (13)	0.34894 (11)	0.0365 (6)
C1A	0.2766 (4)	-0.02241 (17)	0.46806 (15)	0.0244 (6)
H1A	0.3248	-0.0704	0.4693	0.029*
C2A	0.2418 (4)	0.02041 (17)	0.52540 (15)	0.0239 (6)
H2A	0.2634	0.0043	0.5705	0.029*
C3A	0.1699 (4)	0.09143 (16)	0.51014 (14)	0.0210 (6)
C4A	0.1498 (4)	0.10185 (16)	0.43957 (15)	0.0222 (6)
C5A	0.0874 (4)	0.16816 (17)	0.40504 (15)	0.0238 (6)
H5A	0.0532	0.2082	0.4335	0.029*
C6A	0.0729 (4)	0.17880 (17)	0.33661 (16)	0.0249 (6)
H6A	0.0975	0.1392	0.3059	0.030*
C7A	0.0184 (4)	0.25267 (17)	0.30956 (16)	0.0256 (6)
C8A	-0.0036 (4)	0.26287 (17)	0.23283 (14)	0.0229 (6)
C9A	-0.0603 (4)	0.33339 (17)	0.21070 (16)	0.0259 (6)
H9A	-0.0794	0.3719	0.2433	0.031*
C10A	-0.0886 (4)	0.34700 (17)	0.14144 (16)	0.0254 (6)
H10A	-0.1261	0.3944	0.1272	0.031*
C11A	-0.0609 (4)	0.28962 (16)	0.09290 (14)	0.0204 (6)
C12A	-0.0034 (4)	0.21897 (17)	0.11279 (15)	0.0242 (6)
H12A	0.0159	0.1809	0.0798	0.029*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C13A	0.0250 (4)	0.20604 (18)	0.18297 (15)	0.0256 (6)
H13A	0.0636	0.1588	0.1970	0.031*
C14A	0.1198 (4)	0.14848 (17)	0.56469 (15)	0.0269 (6)
H14A	0.1440	0.2000	0.5480	0.040*
H14B	0.1896	0.1417	0.6062	0.040*
H14C	-0.0062	0.1401	0.5747	0.040*
Br1B	0.06425 (4)	0.641083 (17)	0.504583 (14)	0.02379 (7)
S1B	0.40741 (10)	0.35868 (4)	0.11048 (4)	0.02231 (15)
O1B	0.1524 (3)	0.63852 (12)	0.15444 (11)	0.0319 (5)
C1B	0.4340 (4)	0.30589 (17)	0.03649 (15)	0.0241 (6)
H1B	0.4787	0.2571	0.0358	0.029*
C2B	0.3829 (4)	0.34293 (17)	-0.02093 (15)	0.0235 (6)
H2B	0.3894	0.3222	-0.0655	0.028*
C3B	0.3184 (4)	0.41623 (16)	-0.00688(15)	0.0216 (6)
C4B	0.3227 (4)	0.43335 (16)	0.06360 (14)	0.0190 (5)
C5B	0.2649 (4)	0.50129 (16)	0.09745 (15)	0.0223 (6)
H5B	0.2291	0.5403	0.0688	0.027*
C6B	0 2571 (4)	0 51440 (16)	0 16581 (15)	0.0219(6)
H6B	0 2932	0.4773	0 1965	0.026*
C7B	0.1921 (4)	0 58672 (16)	0 19313 (15)	0.0220 (6)
C8B	0.1702(4)	0 59630 (16)	0.26971 (14)	0.0195(5)
C9B	0.1477(4)	0.67065 (16)	0.29517 (14)	0.0216(6)
H9B	0.1522	0.7119	0.2648	0.026*
C10B	0.1189 (4)	0.68366 (17)	0.36492 (15)	0.0239(6)
H10B	0.1051	0.7334	0.3815	0.029*
C11B	0.1107 (4)	0.62180 (17)	0.40995 (14)	0.0213 (6)
C12B	0.1358 (4)	0.54770(17)	0.38653 (15)	0.0237(6)
H12B	0.1320	0.5067	0.4173	0.0237 (0)
C13B	0.1520	0.53542 (16)	0.31644 (15)	0.023
H13B	0.1857	0.4859	0.3004	0.0224 (0)
C14B	0.1037	0.46610 (18)	-0.06228(15)	0.027
H14D	0.2471 (4)	0.40010 (18)	-0.0434	0.0270 (0)
	0.1330	0.3100	-0.0792	0.041*
H14E	0.1330	0.4430	-0.0008	0.041*
$\Pi 14\Gamma$	0.5308 0.53200 (4)	0.4700 0.176242 (17)	-0.0998 0.183227 (14)	0.041°
SIC	0.33300(4) 0.34254(10)	0.170342(17)	0.183227(14)	0.02303(7)
010	0.54254(10)	0.49110(4) 0.20584(12)	0.53077(4)	0.02523(13)
	0.3020(3)	0.20364(12) 0.53832(17)	0.5550(10)	0.0239(4)
	0.2803 (4)	0.53852 (17)	0.05505 (15)	0.0234 (0)
C2C	0.2300	0.3893	0.0300	0.031
	0.2900 (4)	0.49220 (17)	0.71170 (13)	0.0240 (0)
П2С С2С	0.2042	0.3088 0.41624(17)	0.7304	0.029
C3C	0.3371(4)	0.41034(17) 0.40718(16)	0.09505(15)	0.0232(0)
C4C	0.3710(4) 0.4270(4)	0.40/18(10) 0.22000(16)	0.02378(13)	0.0198(3)
	0.4270 (4)	0.33909 (10)	0.59085 (14)	0.0204 (6)
	0.4490	0.2970	0.0190	0.024°
	0.4301 (4)	0.32831(10)	0.32240 (14)	0.0199 (3)
пос С7С	0.4243	0.30/0	0.4917	0.024*
	0.5159 (4)	0.25586 (16)	0.49582 (14)	0.0203 (6)
USU	0.5224 (4)	0.24214 (16)	0.41909 (14)	0.0194 (5)

C9C	0.5869 (4)	0.17268 (17)	0.39661 (15)	0.0264 (6)
H9C	0.6282	0.1386	0.4291	0.032*
C10C	0.5906 (4)	0.15367 (17)	0.32688 (15)	0.0256 (6)
H10C	0.6329	0.1069	0.3125	0.031*
C11C	0.5307 (4)	0.20483 (16)	0.27847 (14)	0.0208 (6)
C12C	0.4694 (4)	0.27475 (16)	0.29928 (15)	0.0242 (6)
H12C	0.4318	0.3093	0.2665	0.029*
C13C	0.4644 (4)	0.29274 (16)	0.36920 (14)	0.0216 (6)
H13C	0.4216	0.3395	0.3833	0.026*
C14C	0.3428 (4)	0.35462 (18)	0.74890 (15)	0.0278 (7)
H14G	0.3778	0.3079	0.7274	0.042*
H14H	0.2256	0.3456	0.7688	0.042*
H14I	0.4287	0.3708	0.7848	0.042*
Br1D	0.43088 (4)	0.857276 (17)	0.320365 (14)	0.02597 (8)
S1D	0.12610 (10)	1.14678 (4)	-0.07243 (4)	0.02260 (15)
O1D	0.3873 (3)	0.86904 (12)	-0.03190 (10)	0.0272 (5)
C1D	0.0671 (4)	1.19363 (17)	-0.14590 (15)	0.0253 (6)
H1D	0.0313	1.2439	-0.1464	0.030*
C2D	0.0791 (4)	1.14818 (17)	-0.20368 (15)	0.0233 (6)
H2D	0.0525	1.1644	-0.2483	0.028*
C3D	0.1359 (4)	1.07380 (16)	-0.18900 (14)	0.0210 (6)
C4D	0.1677 (4)	1.06394 (16)	-0.11917 (14)	0.0190 (5)
C5D	0.2316 (4)	0.99729 (16)	-0.08575 (14)	0.0185 (5)
H5D	0.2602	0.9567	-0.1146	0.022*
C6D	0.2543 (4)	0.98747 (16)	-0.01763 (14)	0.0194 (5)
H6D	0.2193	1.0247	0.0136	0.023*
C7D	0.3352 (4)	0.91752 (16)	0.00857 (14)	0.0197 (5)
C8D	0.3539 (3)	0.90640 (16)	0.08476 (14)	0.0182 (5)
C9D	0.3961 (4)	0.83388 (16)	0.10723 (15)	0.0211 (6)
H9D	0.4086	0.7945	0.0748	0.025*
C10D	0.4196 (4)	0.81935 (17)	0.17707 (15)	0.0228 (6)
H10D	0.4465	0.7706	0.1917	0.027*
C11D	0.4025 (4)	0.87879 (17)	0.22492 (14)	0.0214 (6)
C12D	0.3609 (4)	0.95176 (17)	0.20408 (15)	0.0236 (6)
H12D	0.3494	0.9910	0.2367	0.028*
C13D	0.3366 (4)	0.96525 (16)	0.13381 (14)	0.0206 (6)
H13D	0.3086	1.0139	0.1193	0.025*
C14D	0.1559 (4)	1.01363 (17)	-0.24453 (14)	0.0263 (6)
H14L	0.1864	0.9663	-0.2235	0.039*
H14J	0.2498	1.0311	-0.2755	0.039*
H14K	0.0444	1.0050	-0.2700	0.039*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1A	0.02638 (14)	0.02635 (15)	0.01676 (14)	0.00262 (11)	-0.00219 (11)	0.00349 (11)
S1A	0.0299 (4)	0.0222 (3)	0.0168 (3)	0.0037 (3)	-0.0015 (3)	0.0019 (3)
O1A	0.0639 (16)	0.0296 (12)	0.0177 (11)	0.0158 (11)	-0.0010 (11)	0.0001 (9)

C1A	0.0302 (15)	0.0221 (14)	0.0215 (15)	0.0062 (12)	-0.0017 (12)	0.0047 (11)
C2A	0.0289 (15)	0.0262 (15)	0.0165 (14)	0.0014 (12)	-0.0041 (11)	0.0047 (11)
C3A	0.0217 (13)	0.0226 (14)	0.0188 (14)	0.0031 (11)	-0.0030 (11)	0.0014 (11)
C4A	0.0242 (14)	0.0218 (14)	0.0204 (14)	0.0007 (11)	0.0006 (11)	0.0025 (11)
C5A	0.0277 (15)	0.0224 (14)	0.0216 (15)	0.0042 (11)	-0.0044 (12)	0.0010 (11)
C6A	0.0300 (15)	0.0212 (14)	0.0235 (15)	0.0021 (12)	-0.0017 (12)	0.0043 (11)
C7A	0.0300 (15)	0.0257 (15)	0.0214 (15)	0.0041 (12)	-0.0008 (12)	0.0044 (12)
C8A	0.0246 (14)	0.0284 (15)	0.0153 (13)	0.0002 (12)	-0.0018 (11)	0.0013 (11)
C9A	0.0322 (16)	0.0226 (14)	0.0233 (15)	0.0048 (12)	0.0019 (12)	-0.0010 (12)
C10A	0.0300 (15)	0.0228 (15)	0.0244 (15)	0.0080 (12)	-0.0014 (12)	0.0047 (12)
C11A	0.0206 (13)	0.0229 (14)	0.0175 (13)	0.0012 (11)	-0.0004 (10)	0.0015 (11)
C12A	0.0292 (15)	0.0238 (15)	0.0196 (14)	0.0024 (12)	0.0008 (12)	0.0004 (11)
C13A	0.0310 (16)	0.0267 (15)	0.0194 (14)	0.0049 (12)	-0.0009 (12)	0.0031 (12)
C14A	0.0356 (16)	0.0253 (15)	0.0203 (15)	0.0064 (13)	-0.0007 (12)	0.0024 (12)
Br1B	0.02915 (15)	0.02746 (15)	0.01495 (13)	0.00330 (11)	-0.00046 (11)	0.00104 (11)
S1B	0.0277 (4)	0.0219 (3)	0.0177 (3)	0.0055 (3)	-0.0017 (3)	0.0024 (3)
O1B	0.0522 (14)	0.0242 (11)	0.0206 (11)	0.0120 (10)	-0.0044 (10)	0.0010 (9)
C1B	0.0242 (14)	0.0248 (15)	0.0239 (15)	0.0066 (11)	0.0011 (12)	0.0019 (12)
C2B	0.0272 (14)	0.0269 (15)	0.0172 (14)	0.0080 (12)	-0.0019 (11)	-0.0021 (11)
C3B	0.0235 (14)	0.0228 (14)	0.0186 (14)	0.0030 (11)	-0.0022 (11)	0.0000 (11)
C4B	0.0208 (13)	0.0193 (13)	0.0172 (13)	0.0030 (10)	-0.0038(10)	0.0031 (10)
C5B	0.0223 (14)	0.0192 (14)	0.0257 (15)	0.0035 (11)	-0.0035 (11)	0.0021 (11)
C6B	0.0286 (15)	0.0196 (14)	0.0181 (14)	0.0056 (11)	-0.0024(11)	0.0013 (11)
C7B	0.0262 (14)	0.0199 (14)	0.0198 (14)	0.0020 (11)	-0.0027(11)	-0.0001 (11)
C8B	0.0200 (13)	0.0214 (14)	0.0175 (13)	0.0048 (10)	-0.0044(10)	0.0020 (11)
C9B	0.0244 (14)	0.0220 (14)	0.0185 (14)	0.0029 (11)	-0.0029(11)	0.0028 (11)
C10B	0.0292 (15)	0.0216 (14)	0.0211 (15)	0.0031 (11)	-0.0002(12)	-0.0008(11)
C11B	0.0242 (14)	0.0266 (15)	0.0126 (13)	-0.0015(11)	-0.0009(10)	-0.0003(11)
C12B	0.0289 (15)	0.0233 (14)	0.0189 (14)	0.0019 (12)	-0.0040(12)	0.0028 (11)
C13B	0.0293 (15)	0.0184 (13)	0.0199 (14)	0.0039 (11)	-0.0046(11)	0.0015 (11)
C14B	0.0342 (16)	0.0283 (16)	0.0209 (15)	0.0079(13)	-0.0043(12)	0.0026(12)
Br1C	0.03045(15)	0.02499(15)	0.01402(13)	0.0072(11)	-0.00169(11)	-0.00025(10)
SIC	0.0313 (4)	0.0205(3)	0.0183(3)	0.0029(3)	0.0027 (3)	0.0027 (3)
010	0.0312(1)	0.0236(11)	0.0163(10)	0.0097 (9)	-0.0019(9)	0.0027(8)
C1C	0.0303(12)	0.0224(15)	0.0239(15)	0.0038(12)	0.0019(9)	-0.0017(12)
C2C	0.0202(15)	0.0221(15)	0.0202(14)	0.0039(12)	-0.0002(12)	-0.0021(11)
C3C	0.0237(14)	0.0253(15)	0.0202(11) 0.0205(14)	-0.0003(11)	-0.0002(12)	0.0021 (11)
C4C	0.0297(11) 0.0196(13)	0.0293(13) 0.0198(13)	0.0197 (14)	0.0009 (10)	-0.0023(10)	0.0022(11)
C5C	0.0223(13)	0.0213 (14)	0.0175 (13)	0.0003(10)	-0.0044(11)	0.0022(11) 0.0012(11)
C6C	0.0225(15) 0.0256(14)	0.0213(11) 0.0182(13)	0.0173(13)	0.0017(11) 0.0034(11)	-0.0027(11)	0.0012(11) 0.0024(10)
C7C	0.0250(11)	0.0102(13)	0.0160(13)	0.0034(11)	-0.0027(11)	-0.0007(10)
C8C	0.0232(14) 0.0236(13)	0.0199(13)	0.0100(13)	0.0023(11)	-0.0016(10)	-0.0004(10)
C9C	0.0230(13) 0.0377(17)	0.0269(11) 0.0262(15)	0.0165(14)	0.0007(11) 0.0117(13)	-0.0034(12)	0.0001(10)
C10C	0.0377(17)	0.0202(15)	0.0103 (14)	0.0140(12)	0.003(12)	-0.0021(11)
C11C	0.0261(14)	0.0220(13) 0.0217(14)	0.0127(13)	-0.0011(11)	-0.0002(12)	-0.0013(10)
C12C	0.0337 (16)	0.0217(14)	0.0112(13)	0.0012 (12)	-0.0039(12)	0.0019(10)
C12C	0.0337(10) 0.0279(14)	0.0203(14) 0.0194(14)	0.0179(14)	0.0012(12) 0.0054(11)	-0.0035(12)	0.0029(11)
C14C	0.0275(14) 0.0345(16)	0.0287(14)	0.0211(15)	0.005 + (11)	-0.0004(13)	0.0001(11)
Br1D	0.0319(10) 0.03986(17)	0.0257(10)	0.0211(13) 0.01309(13)	0.0000(13)	-0.00239(12)	0.0013(12) 0.00274(11)
	0.05700 (17)	0.023 12 (13)	0.01507 (15)	0.000007 (12)	0.00237 (12)	0.00274(11)

S1D	0.0296 (4)	0.0216 (3)	0.0173 (3)	0.0064 (3)	0.0000 (3)	0.0010 (3)
O1D	0.0411 (12)	0.0249 (11)	0.0166 (10)	0.0105 (9)	-0.0026 (9)	-0.0012 (8)
C1D	0.0305 (15)	0.0238 (15)	0.0225 (15)	0.0061 (12)	0.0034 (12)	0.0037 (12)
C2D	0.0262 (14)	0.0261 (15)	0.0183 (14)	0.0053 (12)	-0.0030 (11)	0.0063 (11)
C3D	0.0216 (13)	0.0242 (14)	0.0172 (13)	0.0033 (11)	-0.0028 (11)	0.0002 (11)
C4D	0.0193 (13)	0.0213 (13)	0.0165 (13)	0.0027 (10)	-0.0015 (10)	0.0003 (10)
C5D	0.0207 (13)	0.0200 (13)	0.0151 (13)	0.0041 (10)	-0.0024 (10)	-0.0004 (10)
C6D	0.0220 (13)	0.0199 (13)	0.0169 (13)	0.0057 (10)	-0.0027 (10)	0.0003 (10)
C7D	0.0221 (13)	0.0188 (13)	0.0186 (14)	0.0033 (10)	-0.0007 (11)	0.0014 (10)
C8D	0.0172 (12)	0.0232 (14)	0.0144 (13)	0.0024 (10)	-0.0027 (10)	0.0022 (10)
C9D	0.0253 (14)	0.0202 (14)	0.0181 (14)	0.0045 (11)	-0.0022 (11)	-0.0011 (11)
C10D	0.0292 (15)	0.0194 (14)	0.0202 (14)	0.0040 (11)	-0.0011 (12)	0.0027 (11)
C11D	0.0241 (14)	0.0255 (14)	0.0147 (13)	0.0028 (11)	-0.0016 (11)	0.0037 (11)
C12D	0.0302 (15)	0.0224 (14)	0.0184 (14)	0.0039 (12)	0.0000 (12)	-0.0002 (11)
C13D	0.0273 (14)	0.0192 (13)	0.0153 (13)	0.0032 (11)	-0.0018 (11)	-0.0006 (10)
C14D	0.0386 (17)	0.0251 (15)	0.0151 (14)	0.0032 (13)	-0.0083 (12)	-0.0003 (11)

Geometric parameters (Å, °)

Br1A—C11A	1.885 (3)	Br1C—C11C	1.894 (3)
S1A—C1A	1.707 (3)	S1C—C1C	1.709 (3)
S1A—C4A	1.739 (3)	S1C—C4C	1.730 (3)
O1A—C7A	1.220 (4)	O1C—C7C	1.225 (3)
C1A—C2A	1.360 (4)	C1C—C2C	1.363 (4)
C1A—H1A	0.93	C1C—H1C	0.93
C2A—C3A	1.410 (4)	C2C—C3C	1.417 (4)
C2A—H2A	0.93	C2C—H2C	0.93
C3A—C4A	1.381 (4)	C3C—C4C	1.382 (4)
C3A—C14A	1.502 (4)	C3C—C14C	1.495 (4)
C4A—C5A	1.438 (4)	C4C—C5C	1.440 (4)
C5A—C6A	1.337 (4)	C5C—C6C	1.342 (4)
С5А—Н5А	0.93	C5C—H5C	0.93
C6A—C7A	1.470 (4)	C6C—C7C	1.469 (4)
С6А—Н6А	0.93	С6С—Н6С	0.93
C7A—C8A	1.499 (4)	C7C—C8C	1.495 (4)
C8A—C9A	1.392 (4)	C8C—C9C	1.394 (4)
C8A—C13A	1.396 (4)	C8C—C13C	1.394 (4)
C9A—C10A	1.374 (4)	C9C—C10C	1.380 (4)
С9А—Н9А	0.93	С9С—Н9С	0.93
C10A—C11A	1.384 (4)	C10C—C11C	1.386 (4)
C10A—H10A	0.93	C10C—H10C	0.93
C11A—C12A	1.383 (4)	C11C—C12C	1.382 (4)
C12A—C13A	1.388 (4)	C12C—C13C	1.380 (4)
C12A—H12A	0.93	C12C—H12C	0.93
С13А—Н13А	0.93	C13C—H13C	0.93
C14A—H14A	0.96	C14C—H14G	0.96
C14A—H14B	0.96	C14C—H14H	0.96
C14A—H14C	0.96	C14C—H14I	0.96
Br1B—C11B	1.889 (3)	Br1D—C11D	1.892 (3)

S1B—C1B	1.705 (3)	S1D—C1D	1.708 (3)
S1B—C4B	1.737 (3)	S1D—C4D	1.734 (3)
O1B—C7B	1.224 (3)	O1D—C7D	1.225 (3)
C1B—C2B	1.349 (4)	C1D—C2D	1.363 (4)
C1B—H1B	0.93	C1D—H1D	0.93
C2B—C3B	1.414 (4)	C2D—C3D	1.416 (4)
C2B—H2B	0.93	C2D—H2D	0.93
C3B—C4B	1.385 (4)	C3D—C4D	1.377 (4)
C3B—C14B	1.497 (4)	C3D—C14D	1.501 (4)
C4B—C5B	1.434 (4)	C4D—C5D	1.437 (4)
C5B—C6B	1.336 (4)	C5D—C6D	1.335 (4)
C5B—H5B	0.93	C5D—H5D	0.93
C6B—C7B	1.469 (4)	C6D—C7D	1.482 (4)
C6B—H6B	0.93	C6D—H6D	0.93
C7B—C8B	1.494 (4)	C7D—C8D	1.488 (4)
C8B—C13B	1.396 (4)	C8D—C9D	1.391 (4)
C8B—C9B	1.396 (4)	C8D—C13D	1.396 (4)
C9B—C10B	1.381 (4)	C9D-C10D	1.383 (4)
С9В—Н9В	0.93	C9D—H9D	0.93
C10B—C11B	1.387 (4)	C10D—C11D	1.388 (4)
C10B—H10B	0.93	C10D—H10D	0.93
C11B—C12B	1.383 (4)	C11D-C12D	1.387 (4)
C12B—C13B	1.388 (4)	C12D—C13D	1.388 (4)
C12B—H12B	0.93	C12D—H12D	0.93
C13B—H13B	0.93	C13D—H13D	0.93
C14B—H14D	0.96	C14D—H14L	0.96
C14B—H14E	0.96	C14D—H14J	0.96
C14B—H14F	0.96	C14D—H14K	0.96
C1A—S1A—C4A	91.91 (14)	C1C—S1C—C4C	91.55 (14)
C2A—C1A—S1A	111.6 (2)	C2C—C1C—S1C	112.1 (2)
C2A—C1A—H1A	124.2	C2C—C1C—H1C	123.9
S1A—C1A—H1A	124.2	S1C—C1C—H1C	123.9
C1A—C2A—C3A	113.7 (3)	C1C—C2C—C3C	113.1 (3)
C1A—C2A—H2A	123.2	C1C—C2C—H2C	123.4
СЗА—С2А—Н2А	123.2	С3С—С2С—Н2С	123.4
C4A—C3A—C2A	112.2 (3)	C4C—C3C—C2C	111.8 (3)
C4A—C3A—C14A	124.3 (3)	C4C—C3C—C14C	125.5 (3)
C2A—C3A—C14A	123.6 (3)	C2C—C3C—C14C	122.8 (3)
C3A—C4A—C5A	127.6 (3)	C3C—C4C—C5C	127.5 (3)
C3A—C4A—S1A	110.6 (2)	C3C—C4C—S1C	111.4 (2)
C5A—C4A—S1A	121.7 (2)	C5C—C4C—S1C	121.0 (2)
C6A—C5A—C4A	127.3 (3)	C6C—C5C—C4C	127.8 (3)
С6А—С5А—Н5А	116.3	С6С—С5С—Н5С	116.1
С4А—С5А—Н5А	116.3	C4C—C5C—H5C	116.1
C5A—C6A—C7A	120.5 (3)	C5C—C6C—C7C	120.6 (2)
С5А—С6А—Н6А	119.8	С5С—С6С—Н6С	119.7
С7А—С6А—Н6А	119.8	С7С—С6С—Н6С	119.7
O1A—C7A—C6A	120.7 (3)	O1C—C7C—C6C	121.2 (2)
O1A $C7A$ $C8A$	1194(3)	01C-C7C-C8C	119.5 (2)

C6A—C7A—C8A	119.9 (3)	C6C—C7C—C8C	119.4 (2)
C9A—C8A—C13A	118.5 (3)	C9C—C8C—C13C	118.3 (3)
C9A—C8A—C7A	117.1 (3)	C9C—C8C—C7C	117.0 (2)
C13A—C8A—C7A	124.4 (3)	C13C—C8C—C7C	124.7 (3)
C10A—C9A—C8A	121.0 (3)	C10C—C9C—C8C	121.0 (3)
С10А—С9А—Н9А	119.5	С10С—С9С—Н9С	119.5
С8А—С9А—Н9А	119.5	С8С—С9С—Н9С	119.5
C9A—C10A—C11A	119.5 (3)	C9C—C10C—C11C	119.4 (3)
C9A—C10A—H10A	120.2	C9C—C10C—H10C	120.3
C11A—C10A—H10A	120.2	C11C—C10C—H10C	120.3
C12A—C11A—C10A	121.2 (3)	C12C-C11C-C10C	120.7 (3)
C12A—C11A—Br1A	120.5 (2)	C12C—C11C—Br1C	120.8 (2)
C10A—C11A—Br1A	118.3 (2)	C10C—C11C—Br1C	118.5 (2)
C11A—C12A—C13A	118.7 (3)	C13C—C12C—C11C	119.3 (3)
C11A—C12A—H12A	120.7	C13C—C12C—H12C	120.3
C13A—C12A—H12A	120.7	C11C—C12C—H12C	120.3
C12A—C13A—C8A	121.1 (3)	C12C—C13C—C8C	121.2 (3)
C12A—C13A—H13A	119.5	C12C—C13C—H13C	119.4
C8A—C13A—H13A	119.5	C8C—C13C—H13C	119.4
C3A—C14A—H14A	109.5	C3C—C14C—H14G	109.5
C3A—C14A—H14B	109.5	С3С—С14С—Н14Н	109.5
H14A—C14A—H14B	109.5	H14G—C14C—H14H	109.5
C3A—C14A—H14C	109.5	C3C—C14C—H14I	109.5
H14A—C14A—H14C	109.5	H14G—C14C—H14I	109.5
H14B—C14A—H14C	109.5	H14H—C14C—H14I	109.5
CIR SIR CAR	91.52(14)		02.00(14)
CID-SID-C4D	91.52 (14)	CID—SID—C4D	92.09 (14)
C2B—C1B—S1B	112.3 (2)	C1D—S1D—C4D C2D—C1D—S1D	111.6 (2)
C2B—C1B—S1B C2B—C1B—H1B	112.3 (2) 123.8	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D	92.09 (14) 111.6 (2) 124.2
C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B	112.3 (2) 123.8 123.8	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D	92.09 (14) 111.6 (2) 124.2 124.2
C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B	112.3 (2) 123.8 123.8 113.6 (3)	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3)
C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B	112.3 (2) 123.8 123.8 113.6 (3) 123.2	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4
C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C3B—C2B—H2B	112.3 (2) 123.8 123.8 113.6 (3) 123.2 123.2	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D C3D—C2D—H2D	92.09 (14) 111.6 (2) 124.2 113.3 (3) 123.4 123.4
C1B—S1B—C4B C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C3B—C2B—H2B C4B—C3B—C2B	91.32 (14) 112.3 (2) 123.8 123.8 113.6 (3) 123.2 123.2 111.6 (2)	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D C3D—C2D—H2D C4D—C3D—C2D	92.09 (14) 111.6 (2) 124.2 113.3 (3) 123.4 123.4 112.3 (3)
C1B—S1B—C4B C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C3B—C2B—H2B C4B—C3B—C2B C4B—C3B—C2B	91.52 (14) 112.3 (2) 123.8 123.8 113.6 (3) 123.2 123.2 111.6 (2) 125.4 (3)	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D C3D—C2D—H2D C4D—C3D—C2D C4D—C3D—C2D C4D—C3D—C14D	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 112.3 (3) 125.1 (3)
C1B—S1B—C4B C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C3B—C2B—H2B C4B—C3B—C2B C4B—C3B—C14B C2B—C14B	91.32 (14) 112.3 (2) 123.8 123.8 113.6 (3) 123.2 123.2 111.6 (2) 125.4 (3) 122.9 (3)	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D C3D—C2D—H2D C4D—C3D—C2D C4D—C3D—C14D C2D—C3D—C14D	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3)
C1B—S1B—C4B C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C3B—C2B—H2B C4B—C3B—C2B C4B—C3B—C14B C2B—C3B—C14B C3B—C4B—C5B	91.32 (14) 112.3 (2) 123.8 123.8 113.6 (3) 123.2 123.2 111.6 (2) 125.4 (3) 122.9 (3) 127.6 (3)	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D C3D—C2D—H2D C4D—C3D—C2D C4D—C3D—C14D C2D—C3D—C14D C3D—C4D—C5D	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3) 127.7 (3)
C1B—S1B—C4B C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C3B—C2B—H2B C4B—C3B—C2B C4B—C3B—C4B C2B—C4B—C5B C3B—C4B—C5B C3B—C4B—S1B	91.32 (14) 112.3 (2) 123.8 123.8 113.6 (3) 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2)	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D C3D—C2D—H2D C4D—C3D—C2D C4D—C3D—C14D C2D—C3D—C14D C3D—C4D—C5D C3D—C4D—S1D	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2)
C1B—S1B—C4B C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C3B—C2B—H2B C4B—C3B—C2B C4B—C3B—C14B C2B—C3B—C14B C3B—C4B—C5B C3B—C4B—S1B	91.32 (14) 112.3 (2) 123.8 123.8 113.6 (3) 123.2 123.2 123.2 111.6 (2) 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2)	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D C3D—C2D—H2D C4D—C3D—C2D C4D—C3D—C2D C4D—C3D—C14D C2D—C3D—C14D C3D—C4D—C5D C3D—C4D—S1D C5D—C4D—S1D	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2)
C1B—S1B—C4B C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C3B—C2B—H2B C4B—C3B—C2B C4B—C3B—C14B C2B—C3B—C14B C3B—C4B—C5B C3B—C4B—S1B C5B—C4B—S1B C6B—C5B—C4B	91.32 (14) 112.3 (2) 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 111.6 (2) 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3)	C1D—S1D—C4D C2D—C1D—S1D C2D—C1D—H1D S1D—C1D—H1D C1D—C2D—C3D C1D—C2D—H2D C3D—C2D—H2D C4D—C3D—C2D C4D—C3D—C14D C2D—C3D—C14D C3D—C4D—S1D C5D—C4D—S1D C6D—C5D—C4D	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3)
C1B—S1B—C4B C2B—C1B—S1B C2B—C1B—H1B S1B—C1B—H1B C1B—C2B—C3B C1B—C2B—H2B C4B—C3B—C2B C4B—C3B—C2B C4B—C3B—C14B C2B—C3B—C14B C3B—C4B—C5B C3B—C4B—S1B C5B—C4B—S1B C6B—C5B—C4B C6B—C5B—H5B	91.32 (14) 112.3 (2) 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3) 116.6	$\begin{array}{c} C1D = S1D = C4D \\ C2D = C1D = S1D \\ C2D = C1D = H1D \\ S1D = C1D = H1D \\ C1D = C2D = C3D \\ C1D = C2D = H2D \\ C3D = C2D = H2D \\ C4D = C3D = C14D \\ C4D = C3D = C14D \\ C2D = C3D = C14D \\ C3D = C4D = C5D \\ C3D = C4D = S1D \\ C5D = C4D = S1D \\ C6D = C5D = H5D \end{array}$	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5
$\begin{array}{c} C1B = 51B = C4B \\ C2B = C1B = 51B \\ C2B = C1B = H1B \\ S1B = C1B = H1B \\ C1B = C2B = C3B \\ C1B = C2B = H2B \\ C3B = C2B = H2B \\ C4B = C3B = C14B \\ C2B = C3B = C14B \\ C2B = C3B = C14B \\ C3B = C4B = C5B \\ C3B = C4B = S1B \\ C5B = C4B = S1B \\ C6B = C5B = H5B \\ C4B = C5B = H5B \\ \end{array}$	91.32 (14) 112.3 (2) 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3) 116.6 116.6	$\begin{array}{cccccc} C1D & S1D & C4D \\ C2D & C1D & S1D \\ C2D & C1D & H1D \\ S1D & C1D & H1D \\ C1D & C2D & C3D \\ C1D & C2D & H2D \\ C3D & C2D & H2D \\ C4D & C3D & C2D \\ C4D & C3D & C14D \\ C2D & C3D & C14D \\ C2D & C3D & C14D \\ C3D & C4D & C5D \\ C3D & C4D & S1D \\ C5D & C4D & S1D \\ C6D & C5D & H5D \\ C4D & C5D & H5D \\ C4D & C5D & H5D \\ \end{array}$	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5 116.5
$\begin{array}{c} C1B = 51B = C4B \\ C2B = C1B = 51B \\ C2B = C1B = H1B \\ S1B = C1B = H1B \\ C1B = C2B = C3B \\ C1B = C2B = H2B \\ C3B = C2B = H2B \\ C4B = C3B = C14B \\ C4B = C3B = C14B \\ C2B = C3B = C14B \\ C3B = C4B = C5B \\ C3B = C4B = S1B \\ C5B = C4B = S1B \\ C6B = C5B = H5B \\ C4B = C5B = H5B \\ C4B = C5B = H5B \\ C5B = C6B = C7B \end{array}$	91.32 (14) 112.3 (2) 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3) 116.6 116.6 120.8 (3)	$\begin{array}{c} C1D = S1D = C4D \\ C2D = C1D = S1D \\ C2D = C1D = H1D \\ S1D = C1D = H1D \\ C1D = C2D = C3D \\ C1D = C2D = H2D \\ C3D = C2D = H2D \\ C4D = C3D = C2D \\ C4D = C3D = C14D \\ C2D = C3D = C14D \\ C3D = C4D = C5D \\ C3D = C4D = S1D \\ C5D = C4D = S1D \\ C6D = C5D = H5D \\ C4D = C5D = H5D \\ C4D = C5D = H5D \\ C5D = C6D = C7D \end{array}$	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 123.4 123.4 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5 116.5 120.4 (3)
$\begin{array}{c} C1B = 51B = C4B \\ C2B = C1B = S1B \\ C2B = C1B = H1B \\ S1B = C1B = H1B \\ C1B = C2B = C3B \\ C1B = C2B = H2B \\ C3B = C2B = H2B \\ C4B = C3B = C14B \\ C2B = C3B = C14B \\ C2B = C3B = C14B \\ C3B = C4B = S1B \\ C3B = C4B = S1B \\ C5B = C4B = S1B \\ C6B = C5B = H5B \\ C4B = C5B = H5B \\ C4B = C5B = H5B \\ C5B = C6B = H6B \\ \end{array}$	91.32 (14) 112.3 (2) 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3) 116.6 116.6 116.6 119.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 123.4 123.4 125.1 (3) 125.1 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5 116.5 120.4 (3) 119.8
$\begin{array}{c} C1B = 51B = C4B \\ C2B = C1B = 51B \\ C2B = C1B = H1B \\ S1B = C1B = H1B \\ C1B = C2B = C3B \\ C1B = C2B = H2B \\ C3B = C2B = H2B \\ C4B = C3B = C14B \\ C2B = C3B = C14B \\ C2B = C3B = C14B \\ C3B = C4B = C5B \\ C3B = C4B = S1B \\ C5B = C4B = S1B \\ C6B = C5B = H5B \\ C6B = C5B = H5B \\ C4B = C5B = H5B \\ C5B = C6B = H6B \\ C7B = C6B = H6B \\ C7B = C6B = H6B \\ \end{array}$	91.32 (14) 112.3 (2) 123.8 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3) 116.6 116.6 116.6 119.6 119.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92.09 (14) 111.6 (2) 124.2 124.2 123.4 123.4 123.4 123.4 123.4 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5 120.4 (3) 119.8 119.8
$\begin{array}{c} C1B = 51B = C4B \\ C2B = C1B = 51B \\ C2B = C1B = H1B \\ S1B = C1B = H1B \\ C1B = C2B = H2B \\ C3B = C2B = H2B \\ C4B = C3B = C2B \\ C4B = C3B = C14B \\ C2B = C3B = C14B \\ C2B = C3B = C14B \\ C3B = C4B = C5B \\ C3B = C4B = S1B \\ C5B = C4B = S1B \\ C6B = C5B = H5B \\ C6B = C5B = H5B \\ C4B = C5B = H5B \\ C5B = C6B = H6B \\ C7B = C6B = H6B \\ O1B = C7B = C6B \\ \end{array}$	91.32 (14) 112.3 (2) 123.8 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3) 116.6 116.6 119.6 119.6 121.4 (3)	$\begin{array}{c} C1D = S1D = C4D \\ C2D = C1D = S1D \\ C2D = C1D = H1D \\ S1D = C1D = H1D \\ C1D = C2D = C3D \\ C1D = C2D = H2D \\ C3D = C2D = H2D \\ C4D = C3D = C2D \\ C4D = C3D = C14D \\ C2D = C3D = C14D \\ C2D = C3D = C14D \\ C3D = C4D = C5D \\ C3D = C4D = S1D \\ C5D = C4D = S1D \\ C6D = C5D = H5D \\ C6D = C5D = H5D \\ C5D = C6D = H5D \\ C5D = C6D = H6D \\ C7D = C6D = H6D \\ O1D = C7D = C6D \\ \end{array}$	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5 120.4 (3) 119.8 119.8 120.6 (3)
$\begin{array}{c} C1B = 51B = C4B \\ C2B = C1B = 51B \\ C2B = C1B = H1B \\ S1B = C1B = H1B \\ C1B = C2B = C3B \\ C1B = C2B = H2B \\ C3B = C2B = H2B \\ C4B = C3B = C2B \\ C4B = C3B = C14B \\ C2B = C3B = C14B \\ C3B = C4B = C5B \\ C3B = C4B = S1B \\ C5B = C4B = S1B \\ C6B = C5B = H5B \\ C4B = C5B = H5B \\ C4B = C5B = H5B \\ C4B = C5B = H5B \\ C5B = C6B = H6B \\ C7B = C6B = H6B \\ O1B = C7B = C6B \\ O1B = C7B = C8B \\ \end{array}$	91.32 (14) 112.3 (2) 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 111.6 (2) 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3) 116.6 116.6 119.6 119.6 121.4 (3) 119.5 (3)	$\begin{array}{c} C1D = S1D = C4D \\ C2D = C1D = S1D \\ C2D = C1D = H1D \\ S1D = C1D = H1D \\ S1D = C2D = C3D \\ C1D = C2D = C3D \\ C1D = C2D = H2D \\ C3D = C2D = H2D \\ C4D = C3D = C14D \\ C2D = C3D = C14D \\ C2D = C3D = C14D \\ C3D = C4D = C5D \\ C3D = C4D = C5D \\ C3D = C4D = S1D \\ C5D = C4D = S1D \\ C6D = C5D = H5D \\ C6D = C5D = H5D \\ C4D = C5D = H5D \\ C5D = C6D = H6D \\ C7D = C6D = H6D \\ O1D = C7D = C8D \\ \end{array}$	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 123.4 112.3 (3) 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5 116.5 120.4 (3) 119.8 129.8 (2)
$\begin{array}{c} C1B = 51B = C4B \\ C2B = C1B = 51B \\ C2B = C1B = H1B \\ S1B = C1B = H1B \\ C1B = C2B = C3B \\ C1B = C2B = H2B \\ C3B = C2B = H2B \\ C4B = C3B = C14B \\ C2B = C3B = C14B \\ C2B = C3B = C14B \\ C3B = C4B = C5B \\ C3B = C4B = S1B \\ C3B = C4B = S1B \\ C6B = C5B = H5B \\ C6B = C5B = H5B \\ C6B = C5B = H5B \\ C5B = C6B = H5B \\ C5B = C6B = H6B \\ C7B = C6B = H6B \\ O1B = C7B = C8B \\ C6B = C7B = C8B \\ \end{array}$	91.32 (14) 112.3 (2) 123.8 123.8 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 123.2 125.4 (3) 122.9 (3) 127.6 (3) 110.9 (2) 121.5 (2) 126.8 (3) 116.6 120.8 (3) 119.6 121.4 (3) 119.5 (3) 119.1 (2)	$\begin{array}{c} C1D = S1D = C4D \\ C2D = C1D = S1D \\ C2D = C1D = H1D \\ S1D = C1D = H1D \\ S1D = C2D = C3D \\ C1D = C2D = H2D \\ C3D = C2D = H2D \\ C4D = C3D = C14D \\ C2D = C3D = C14D \\ C2D = C3D = C14D \\ C3D = C4D = C5D \\ C3D = C4D = S1D \\ C5D = C4D = S1D \\ C6D = C5D = H5D \\ C4D = C5D = H5D \\ C5D = C6D = H6D \\ C7D = C6D = H6D \\ O1D = C7D = C8D \\ C6D = C7D = C8D \\ C6D = C7D = C8D \\ \end{array}$	92.09 (14) 111.6 (2) 124.2 124.2 113.3 (3) 123.4 123.4 123.4 123.4 123.3 (3) 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5 120.4 (3) 119.8 129.8 (2) 119.6 (2)
$\begin{array}{c} C1B = 51B = C4B \\ C2B = C1B = 51B \\ C2B = C1B = H1B \\ S1B = C1B = H1B \\ S1B = C2B = H2B \\ C1B = C2B = H2B \\ C3B = C2B = H2B \\ C4B = C3B = C14B \\ C2B = C3B = C14B \\ C2B = C3B = C14B \\ C3B = C4B = C5B \\ C3B = C4B = S1B \\ C5B = C4B = S1B \\ C6B = C5B = H5B \\ C6B = C5B = H5B \\ C6B = C5B = H5B \\ C5B = C6B = H5B \\ C5B = C6B = H6B \\ C7B = C6B = H6B \\ O1B = C7B = C6B \\ O1B = C7B = C8B \\ C6B = C7B = C8B \\ C13B = C8B = C9B \\ \end{array}$	91.32 (14) 112.3 (2) 123.8 123.8 123.8 123.2 125.4 (3) 110.9 (2) 121.5 (2) 126.8 (3) 119.6 119.6 119.6 119.5 (3) 119.1 (2) 118.7 (3)	$\begin{array}{c} C1D = S1D = C4D \\ C2D = C1D = S1D \\ C2D = C1D = H1D \\ S1D = C1D = H1D \\ C1D = C2D = C3D \\ C1D = C2D = H2D \\ C3D = C2D = H2D \\ C4D = C3D = C14D \\ C3D = C4D = C2D \\ C4D = C3D = C14D \\ C3D = C4D = C5D \\ C3D = C4D = S1D \\ C5D = C4D = S1D \\ C6D = C5D = H5D \\ C6D = C5D = H5D \\ C4D = C5D = H5D \\ C5D = C6D = H6D \\ C7D = C6D = H6D \\ O1D = C7D = C8D \\ C6D = C7D = C8D \\ C6D = C7D = C8D \\ C9D = C8D = C13D \end{array}$	92.09 (14) 111.6 (2) 124.2 124.2 123.4 123.4 123.4 123.4 123.4 125.1 (3) 122.5 (3) 127.7 (3) 110.7 (2) 121.5 (2) 126.9 (3) 116.5 116.5 120.4 (3) 119.8 119.8 120.6 (3) 119.6 (2) 119.1 (3)

C9B—C8B—C7B	117.4 (2)	C13D—C8D—C7D	123.4 (2)
C10B—C9B—C8B	120.8 (3)	C10D-C9D-C8D	121.0 (3)
С10В—С9В—Н9В	119.6	C10D—C9D—H9D	119.5
C8B—C9B—H9B	119.6	C8D—C9D—H9D	119.5
C9B—C10B—C11B	119.4 (3)	C9D-C10D-C11D	118.9 (3)
C9B—C10B—H10B	120.3	C9D—C10D—H10D	120.5
C11B—C10B—H10B	120.3	C11D-C10D-H10D	120.5
C12B—C11B—C10B	121.1 (3)	C12D-C11D-C10D	121.4 (3)
C12B—C11B—Br1B	120.5 (2)	C12D—C11D—Br1D	120.3 (2)
C10B—C11B—Br1B	118.4 (2)	C10D—C11D—Br1D	118.3 (2)
C11B—C12B—C13B	119.0 (3)	C11D—C12D—C13D	119.0 (3)
C11B—C12B—H12B	120.5	C11D-C12D-H12D	120.5
C13B—C12B—H12B	120.5	C13D—C12D—H12D	120.5
C12B—C13B—C8B	121.0 (3)	C12D-C13D-C8D	120.6 (3)
C12B—C13B—H13B	119.5	C12D-C13D-H13D	119.7
C8B—C13B—H13B	119.5	C8D-C13D-H13D	119.7
C3B—C14B—H14D	109.5	C3DC14DH14L	109.5
C3B—C14B—H14E	109.5	C3D—C14D—H14J	109.5
H14D—C14B—H14E	109.5	H14L—C14D—H14J	109.5
C3B—C14B—H14F	109.5	C3DC14DH14K	109.5
H14D—C14B—H14F	109.5	H14L—C14D—H14K	109.5
H14E—C14B—H14F	109.5	H14J—C14D—H14K	109.5
C4A—S1A—C1A—C2A	0.4 (2)	C4C—S1C—C1C—C2C	0.2 (2)
S1A—C1A—C2A—C3A	-0.4 (3)	S1C-C1C-C2C-C3C	-0.7 (3)
C1A—C2A—C3A—C4A	0.2 (4)	C1C—C2C—C3C—C4C	1.0 (4)
C1A—C2A—C3A—C14A	179.7 (3)	C1C—C2C—C3C—C14C	-177.5 (3)
C2A—C3A—C4A—C5A	-177.5 (3)	C2C—C3C—C4C—C5C	178.4 (3)
C14A—C3A—C4A—C5A	3.1 (5)	C14C—C3C—C4C—C5C	-3.0 (5)
C2A—C3A—C4A—S1A	0.0 (3)	C2C—C3C—C4C—S1C	-0.9 (3)
C14A—C3A—C4A—S1A	-179.4 (2)	C14C—C3C—C4C—S1C	177.7 (2)
C1A—S1A—C4A—C3A	-0.2 (2)	C1C—S1C—C4C—C3C	0.4 (2)
C1A—S1A—C4A—C5A	177.4 (2)	C1C—S1C—C4C—C5C	-179.0 (2)
C3A—C4A—C5A—C6A	178.0 (3)	C3C—C4C—C5C—C6C	175.6 (3)
S1A-C4A-C5A-C6A	0.7 (4)	S1C—C4C—C5C—C6C	-5.2 (4)
C4A—C5A—C6A—C7A	-175.7 (3)	C4C—C5C—C6C—C7C	177.1 (3)
C5A—C6A—C7A—O1A	2.8 (5)	C5C—C6C—C7C—O1C	-4.7 (4)
C5A—C6A—C7A—C8A	-177.9 (3)	C5C—C6C—C7C—C8C	173.7 (3)
O1A—C7A—C8A—C9A	-2.4 (4)	O1C—C7C—C8C—C9C	-1.9 (4)
C6A—C7A—C8A—C9A	178.2 (3)	C6C—C7C—C8C—C9C	179.6 (3)
O1A—C7A—C8A—C13A	179.2 (3)	O1C—C7C—C8C—C13C	176.4 (3)
C6A—C7A—C8A—C13A	-0.2 (4)	C6C—C7C—C8C—C13C	-2.1 (4)
C13A—C8A—C9A—C10A	0.3 (4)	C13C—C8C—C9C—C10C	-1.2 (4)
C7A—C8A—C9A—C10A	-178.3 (3)	C7C—C8C—C9C—C10C	177.2 (3)
C8A—C9A—C10A—C11A	0.2 (5)	C8C—C9C—C10C—C11C	0.6 (5)
C9A—C10A—C11A—C12A	-0.7 (4)	C9C—C10C—C11C—C12C	0.7 (5)
C9A—C10A—C11A—Br1A	179.9 (2)	C9C—C10C—C11C—Br1C	-178.8 (2)
C10A—C11A—C12A—C13A	0.6 (4)	C10C—C11C—C12C—C13C	-1.4 (4)
Br1A—C11A—C12A—C13A	-180.0 (2)	Br1C—C11C—C12C—C13C	178.1 (2)
C11A—C12A—C13A—C8A	0.0 (4)	C11C—C12C—C13C—C8C	0.9 (4)

C9A—C8A—C13A—C12A	-0.4 (4)	C9C—C8C—C13C—C12C	0.4 (4)
C7A—C8A—C13A—C12A	178.0 (3)	C7C—C8C—C13C—C12C	-177.9 (3)
C4B—S1B—C1B—C2B	0.5 (2)	C4D—S1D—C1D—C2D	-0.2 (2)
S1B-C1B-C2B-C3B	-0.4 (3)	S1D—C1D—C2D—C3D	0.3 (3)
C1B—C2B—C3B—C4B	0.0 (4)	C1D-C2D-C3D-C4D	-0.3 (4)
C1B—C2B—C3B—C14B	-177.3 (3)	C1D-C2D-C3D-C14D	179.1 (3)
C2B—C3B—C4B—C5B	-178.6 (3)	C2D—C3D—C4D—C5D	-178.0 (3)
C14B—C3B—C4B—C5B	-1.3 (5)	C14D—C3D—C4D—C5D	2.6 (5)
C2B—C3B—C4B—S1B	0.3 (3)	C2D-C3D-C4D-S1D	0.2 (3)
C14B—C3B—C4B—S1B	177.6 (2)	C14D—C3D—C4D—S1D	-179.2 (2)
C1B—S1B—C4B—C3B	-0.4 (2)	C1D—S1D—C4D—C3D	0.0 (2)
C1B—S1B—C4B—C5B	178.6 (2)	C1D—S1D—C4D—C5D	178.3 (2)
C3B—C4B—C5B—C6B	174.5 (3)	C3D-C4D-C5D-C6D	-176.9 (3)
S1B-C4B-C5B-C6B	-4.4 (4)	S1D-C4D-C5D-C6D	5.1 (4)
C4B—C5B—C6B—C7B	-179.1 (3)	C4DC5DC6DC7D	-175.2 (3)
C5B—C6B—C7B—O1B	-3.9 (4)	C5D-C6D-C7D-01D	2.3 (4)
C5B—C6B—C7B—C8B	174.7 (3)	C5D-C6D-C7D-C8D	-178.0 (3)
O1B-C7B-C8B-C13B	163.1 (3)	O1D-C7D-C8D-C9D	-12.9 (4)
C6B—C7B—C8B—C13B	-15.5 (4)	C6D—C7D—C8D—C9D	167.4 (2)
O1B-C7B-C8B-C9B	-15.3 (4)	O1D-C7D-C8D-C13D	165.2 (3)
C6B—C7B—C8B—C9B	166.0 (3)	C6D-C7D-C8D-C13D	-14.5 (4)
C13B-C8B-C9B-C10B	-1.4 (4)	C13D-C8D-C9D-C10D	0.4 (4)
C7B-C8B-C9B-C10B	177.2 (3)	C7D-C8D-C9D-C10D	178.6 (3)
C8B-C9B-C10B-C11B	-0.6 (4)	C8D-C9D-C10D-C11D	-0.7 (4)
C9B—C10B—C11B—C12B	1.8 (4)	C9D-C10D-C11D-C12D	0.6 (4)
C9B—C10B—C11B—Br1B	-178.2 (2)	C9D—C10D—C11D—Br1D	178.9 (2)
C10B—C11B—C12B—C13B	-1.1 (4)	C10D-C11D-C12D-C13D	-0.2 (4)
Br1B-C11B-C12B-C13B	179.0 (2)	Br1D-C11D-C12D-C13D	-178.5 (2)
C11B—C12B—C13B—C8B	-0.9 (4)	C11D—C12D—C13D—C8D	-0.1 (4)
C9B-C8B-C13B-C12B	2.1 (4)	C9D-C8D-C13D-C12D	-0.1 (4)
C7B—C8B—C13B—C12B	-176.3 (3)	C7D-C8D-C13D-C12D	-178.1 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
0.93	2.55	3.478 (4)	175
0.93	2.43	2.773 (4)	102
0.93	2.84	3.190 (3)	104
0.93	2.41	2.737 (4)	100
0.93	2.47	3.397 (4)	177
0.93	2.46	2.794 (4)	101
0.93	2.81	3.171 (3)	104
0.93	2.44	2.789 (3)	102
0.93	2.84	3.184 (3)	103
0.93	2.42	2.737 (3)	100
0.93	2.54	3.440 (4)	164
0.93	2.44	2.784 (4)	102
0.93	2.82	3.174 (3)	104
	D—H 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	D —H $H \cdots A$ 0.93 2.55 0.93 2.43 0.93 2.84 0.93 2.41 0.93 2.47 0.93 2.46 0.93 2.46 0.93 2.81 0.93 2.84 0.93 2.42 0.93 2.54 0.93 2.54 0.93 2.44 0.93 2.82	D—HH···A D ···A 0.93 2.55 3.478 (4) 0.93 2.43 2.773 (4) 0.93 2.84 3.190 (3) 0.93 2.41 2.737 (4) 0.93 2.47 3.397 (4) 0.93 2.46 2.794 (4) 0.93 2.81 3.171 (3) 0.93 2.84 3.184 (3) 0.93 2.42 2.737 (3) 0.93 2.54 3.440 (4) 0.93 2.82 3.174 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*, -*y*+2, -*z*.

Fig. 1

